7 Great Java Interview Questions*

Describe and compare fail-fast and fail-safe iterators. Give examples.

The main distinction between fail-fast and fail-safe iterators is whether or not the collection can be modified while it is being iterated. Fail-safe iterators allow this; fail-fast iterators do not.

  • Fail-fast iterators operate directly on the collection itself. During iteration, fail-fast iterators fail as soon as they realize that the collection has been modified (i.e., upon realizing that a member has been added, modified, or removed) and will throw a ConcurrentModificationException. Some examples include ArrayList, HashSet, and HashMap (most JDK1.4 collections are implemented to be fail-fast).

  • Fail-safe iterates operate on a cloned copy of the collection and therefore do not throw an exception if the collection is modified during iteration. Examples would include iterators returned by ConcurrentHashMap or CopyOnWriteArrayList.

Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.

Why would it be more secure to store sensitive data (such as a password, social security number, etc.) in a character array rather than in a String?

In Java, Strings are immutable and are stored in the String pool. What this means is that, once a String is created, it stays in the pool in memory until being garbage collected. Therefore, even after you’re done processing the string value (e.g., the password), it remains available in memory for an indeterminate period of time thereafter (again, until being garbage collected) which you have no real control over. Therefore, anyone having access to a memory dump can potentially extract the sensitive data and exploit it.

In contrast, if you use a mutable object like a character array, for example, to store the value, you can set it to blank once you are done with it with confidence that it will no longer be retained in memory.

Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.

What is the ThreadLocal class? How and why would you use it?

A single ThreadLocal instance can store different values for each thread independently. Each thread that accesses the get() or set() method of a ThreadLocal instance is accessing its own, independently initialized copy of the variable. ThreadLocal instances are typically private static fields in classes that wish to associate state with a thread (e.g., a user ID or transaction ID). The example below, from the ThreadLocal Javadoc, generates unique identifiers local to each thread. A thread’s id is assigned the first time it invokes ThreadId.get() and remains unchanged on subsequent calls.

public class ThreadId {
    // Next thread ID to be assigned
    private static final AtomicInteger nextId = new AtomicInteger(0);

    // Thread local variable containing each thread's ID
    private static final ThreadLocal<Integer> threadId =
        new ThreadLocal<Integer>() {
            @Override protected Integer initialValue() {
                return nextId.getAndIncrement();
        }
    };

    // Returns the current thread's unique ID, assigning it if necessary
    public static int get() {
        return threadId.get();
    }
}

Each thread holds an implicit reference to its copy of a thread-local variable as long as the thread is alive and the ThreadLocal instance is accessible; after a thread goes away, all of its copies of thread-local instances are subject to garbage collection (unless other references to these copies exist).

Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.

Compare the sleep() and wait() methods in Java, including when and why you would use one vs. the other.

sleep() is a blocking operation that keeps a hold on the monitor / lock of the shared object for the specified number of milliseconds.

wait(), on the other hand, simply pauses the thread until either (a) the specified number of milliseconds have elapsed or (b) it receives a desired notification from another thread (whichever is first), without keeping a hold on the monitor/lock of the shared object.

sleep() is most commonly used for polling, or to check for certain results, at a regular interval. wait() is generally used in multithreaded applications, in conjunction with notify() / notifyAll(), to achieve synchronization and avoid race conditions.

Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.

What is the volatile keyword? How and why would you use it?

In Java, each thread has its own stack, including its own copy of variables it can access. When the thread is created, it copies the value of all accessible variables into its own stack. The volatile keyword basically says to the JVM “Warning, this variable may be modified in another Thread”.

In all versions of Java, the volatile keyword guarantees global ordering on reads and writes to a variable. This implies that every thread accessing a volatile field will read the variable’s current value instead of (potentially) using a cached value.

In Java 5 or later, volatile reads and writes establish a happens-before relationship, much like acquiring and releasing a mutex.

Using volatile may be faster than a lock, but it will not work in some situations. The range of situations in which volatile is effective was expanded in Java 5; in particular, double-checked locking now works correctly.

One common example for using volatile is for a flag to terminate a thread. If you’ve started a thread, and you want to be able to safely interrupt it from a different thread, you can have the thread periodically check a flag (i.e., to stop it, set the flag to true). By making the flag volatile, you can ensure that the thread that is checking its value will see that it has been set to true without even having to use a synchronized block. For example:

public class Foo extends Thread {
    private volatile boolean close = false;
    public void run() {
        while(!close) {
            // do work
        }
    }
    public void close() {
        close = true;
        // interrupt here if needed
    }
}
Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.

Tail recursion is functionally equivalent to iteration. Since Java does not yet support tail call optimization, describe how to transform a simple tail recursive function into a loop and why one is typically preferred over the other.

Here is an example of a typical recursive function, computing the arithmetic series 1, 2, 3…N. Notice how the addition is performed after the function call. For each recursive step, we add another frame to the stack.

public int sumFromOneToN(int n) {
  if (n < 1) {
    return n;
  }

  return n + sumFromOneToN(n - 1);
}

Tail recursion occurs when the recursive call is in the tail position within its enclosing context - after the function calls itself, it performs no additional work. That is, once the base case is complete, the solution is apparent. For example:

public int sumFromOneToN(int n, int a) {
  if (n < 1) {
    return a;
  }

  return sumFromOneToN(n - 1, a + n);
}

Here you can see that a plays the role of the accumulator - instead of computing the sum on the way down the stack, we compute it on the way up, effectively making the return trip unnecessary, since it stores no additional state and performs no further computation. Once we hit the base case, the work is done - below is that same function, “unrolled”.

public int sumFromOneToN(int n) {
  int a = 0;

  while(n > 0) {
    a += n--;
  }
  
  return a;
}

Many functional languages natively support tail call optimization, however the JVM does not. In order to implement recursive functions in Java, we need to be aware of this limitation to avoid StackOverflowErrors. In Java, iteration is almost universally preferred to recursion.

Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.

ArrayList, LinkedList, and Vector are all implementations of the List interface. Which of them is most efficient for adding and removing elements from the list? Explain your answer, including any other alternatives you may be aware of.

Of the three, LinkedList is generally going to give you the best performance. Here’s why:

ArrayList and Vector each use an array to store the elements of the list. As a result, when an element is inserted into (or removed from) the middle of the list, the elements that follow must all be shifted accordingly. Vector is synchronized, so if a thread-safe implementation is not needed, it is recommended to use ArrayList rather than Vector.

LinkedList, on the other hand, is implemented using a doubly linked list. As a result, an inserting or removing an element only requires updating the links that immediately precede and follow the element being inserted or removed.

However, it is worth noting that if performance is that critical, it’s better to just use an array and manage it yourself, or use one of the high performance 3rd party packages such as Trove or HPPC.

Fields marked with an asterisk (*) are required
Comment submitted succesfully. Thank you.
We are going to review the comment and get back to you as soon as possible.
* There is more to interviewing than tricky technical questions, so these are intended merely as a guide. Not every “A” candidate worth hiring will be able to answer them all, nor does answering them all guarantee an “A” candidate. At the end of the day, hiring remains an art, a science — and a lot of work.
Submit an interview question
You may submit a question with or without an answer, but those submitted with answers are more likely to be posted. Submitted questions and answers are subject to review and editing, and may or may not be selected for posting, at the sole discretion of Toptal, LLC.
Fields marked with an asterisk (*) are required
Thanks for submitting your question.
Our editorial staff will review it shortly. Please note that submitted questions and answers are subject to review and editing, and may or may not be selected for posting, at the sole discretion of Toptal, LLC.
Harold Frazier, Jr.
United States
Computers have been Harold's passion since he compiled his first program in elementary school. He will always appreciate how the software industry continues to change and grow through technology innovations that make our lives more enjoyable and efficient.
Juan Pablo Lorandi
Argentina
Juan is an experienced web and mobile software developer with over ten years of experience in Java and SQL. He enjoys frequently tinkering with code and gadgets, and doesn't pass up any chance to competitively test his computer science or electronics skills.
Pablo Lalloni
Argentina
Pablo is an architect & developer with extensive experience in a wide range of techniques and technologies, a strong ability to understand & solve problems efficiently, keeping in mind the big picture, & achieving very high quality consistently. Has successfully led several projects of small teams.