Clay Connors, Developer in Cary, NC, United States
Clay is available for hire
Hire Clay

Clay Connors

Verified Expert  in Engineering

Software Developer

Cary, NC, United States
Toptal Member Since
May 9, 2022

Clay has extensive experience with data-oriented software design and development, having built a wide range of software to exact and open-ended customer specifications. He has also published research using deep neural networks for land use classification and change detection in high-resolution aerial imagery, later leading a team to develop a machine learning system that detects defects in solar panels from drone imagery.


Artificial Intelligence (AI), Software, Computer Science, Python...
Bamboo Mobile Health
Java, Android, Mobile, DreamFactory, PHP, C, ARM Embedded, Amazon Alexa, Cron...




Preferred Environment

Linux, PyCharm, Conda, Git

The most amazing...

...public thing I've developed is an AI system for detecting physical changes in almost entirely unlabeled satellite imagery.

Work Experience

Project Engineer

2019 - 2021
  • Wrote technical content of proposals in the electronic warfare space and implemented software and machine learning systems for accepted submissions.
  • Evaluated utility of classifiers and regression techniques for detecting varied kinds of interference.
  • Worked on a software system for fast approximate matching of time series data. Built the initial prototype of the system into a usable product and expanded the algorithm to include new methods that increase the system's speed and accuracy.
  • Expanded a system for secure computing with neural networks to work on full-scale, competitive deep neural networks with various layer types rather than only on fully-connected or convolutional layers.
  • Communicated with customers during development to give results and receive specifications. Built software to requirements and prepared demo-ready versions to display to customers at predetermined dates.
Technologies: Artificial Intelligence (AI), Software, Computer Science, Python, Machine Learning, Deep Learning

Software Engineer

2014 - 2017
Bamboo Mobile Health
  • Assessed an incomplete build of an embedded wearable device, discovered all unimplemented capabilities and implemented them to bring the product to a demo-ready state.
  • Produced an Amazon Alexa skill to allow patients to verbally record medication events. The system vastly increases ease-of-use of patient self-reporting by being touch-free and effortless to use.
  • Developed an app to log patient symptoms for analysis alongside data from company servers. Allowed rendering a patient's symptom history through the app for physician diagnostic purposes.
  • Built a system to pull patient Fitbit data from third-party servers to company servers for analysis.
Technologies: Java, Android, Mobile, DreamFactory, PHP, C, ARM Embedded, Amazon Alexa, Cron, Amazon Web Services (AWS)

Semi-supervised Change Detection in Very High Resolution Imagery
I was given the task of leveraging recent developments in machine learning to provide highly accurate change detection in very high resolution (around one meter spatial resolution) bi-temporal aerial imagery.

To allow using the object recognition capabilities of convolutional neural networks while avoiding high sample complexity, I took a semi-supervised approach. I trained a Variational Autoencoders (VAE), which optimizes an information-theoretic bound on latent information and allows training on a mixture of labeled and unlabeled data.

I also modified the VAE to allow categorical and temporally-dependent latent variables in addition to the usual independent continuous latent variables seen in VAEs. This means that the neural network could learn, for example, that it was more likely for vegetation to transform into a building than the other way around. Areas with poor lighting in one-time steps could then use information from different time steps to decide on the class label.

The quality of the predictions was highly satisfactory, considering the low labeling requirements. The paper was accepted to IGARSS 2017, where I presented the results and discussed potential future improvements to be made.


Python, C, C++, Java, SQL, PHP


Artificial Intelligence (AI), Software, Deep Learning, Computer Science, Convolutional Neural Networks (CNN), Information Theory, Computer Engineering, Machine Learning, Geospatial Analytics, ARM Embedded, Conda


TensorFlow, Node.js, React, OpenCV, DreamFactory


Mobile, Android, Kubernetes, Amazon Alexa, Amazon Web Services (AWS), Linux


Databases, MongoDB


GIS, Cron, PyCharm, Git

2017 - 2019

Master's Degree in Computer Science and Engineering

University of Michigan - Ann Arbor, MI

2013 - 2017

Bachelor's Degree in Computer Engineering

North Carolina State University - Raleigh, NC

Collaboration That Works

How to Work with Toptal

Toptal matches you directly with global industry experts from our network in hours—not weeks or months.


Share your needs

Discuss your requirements and refine your scope in a call with a Toptal domain expert.

Choose your talent

Get a short list of expertly matched talent within 24 hours to review, interview, and choose from.

Start your risk-free talent trial

Work with your chosen talent on a trial basis for up to two weeks. Pay only if you decide to hire them.

Top talent is in high demand.

Start hiring