Working with non-numerical data can be challenging, even for seasoned data scientists. To make good use of such data, it needs to be transformed. But how? In this article, Toptal Data Scientist Yaroslav Kopotilov will introduce you to embeddings and demonstrate how they can be used to visualize complex data and make it usable.
TensorFlow is one of the leading tools for training deep learning models. Outside that space, it may seem intimidating and unnecessary, but it has many creative uses—like producing highly effective adversarial input for black-box AI systems.
Pre-trained models are making waves in the deep learning world. Using massive pre-training datasets, these NLP models bring previously unheard-of feats of AI within the reach of app developers.
For those working with AI, the future is certainly exciting. At the same time, there is a general sense that AI suffers from one pesky flaw: AI in its current state can be unpredictably unreliable.
IMDb ratings have genre bias: For example, dramas tend to score higher. Removing common feature bias and keeping unique characteristics, it's possible to create a new, refined score based on IMDb information.
Supervised learning is the key to computer vision and deep learning. However, what happens when you don’t have access to large, human-labeled datasets? In this article, Toptal Computer Vision Developer Urwa Muaz demonstrates the potential of semi-supervised image classification using unlabeled datasets.
For a successful natural language processing project, collecting and preparing data, building resilient pipelines, and getting "model ready" can easily take months of effort even with the most talented engineers. But what if we could reduce the data required to a fraction? In this article, we’ll cover how transfer learning is making world-class models open source and introduce BERT (bidirectional encoder representations from transformers). BERT is the most powerful NLP “tool” to date. We’ll explore how it works and why it will change the way companies execute NLP projects.
The increasing accuracy of machine learning systems has resulted in a flood of applications using them. As machine learning models matured and improved, so did ways of attacking them. In this article, Toptal Python Developer Pau Labarta Bajo examines the world of adversarial machine learning, explains how ML models can be attacked, and what you can do to safeguard them against attack.
Manually gathering information about user-generated data is time-consuming, to say the least. That's why more organizations are turning to automatic sentiment analysis methods—but basic models don't always cut it. In this article, Toptal Freelance Data Scientist Rudolf Eremyan gives an overview of some sentiment analysis gotchas and what can be done to address them.
World-class articles, delivered weekly.
Subscription implies consent to our privacy policy
Thank you!
Check out your inbox to confirm your invite.
Join the Toptal® community.